COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

COURS : PROGRAMMATION DYNAMIQUE
= ALGORITHME DE FLOYD-WARSHALL=

Notre derniere étude vise a généraliser le calcul des plus courts chemins dans un graphe en
passant du cas « une source vers tous » au cas « toutes les paires ». Dans de nombreuses
applications (par exemple un service d’itinéraires), on ne connait pas a I’avance le sommet
de départ : il faut pouvoir répondre pour n‘importe quelle origine et n’'importe quelle
destination. On conserve les mémes subtilités que précédemment, en autorisant des
longueurs d’arétes négatives et en exigeant, le cas échéant, la détection d’un cycle négatif
plutdt que la production de distances ambigués.

1) PLUS COURTS CHEMINS ENTRE TOUTES LES PAIRES DE SOMMETSccceeiiiiiiiininnnneneennnas
[.1. DEfinition du ProblEMEeeiiiiiiii e
I.2. Réduction aux plus courts chemins @ SOUrCe UNIQUEuuuvvueereerrrerererirerenneneeennnnnnnennne.

I1) ALGORITHME DE FLOYD-WARSHALLuuuuimtiiiiiiiiiiinneeeccissssnsnseeesssssscssssnsssssseseas
] Yo TU T o] o] 1= 3 V= S SPRRRP
11.2. SOUS-STrUCTUIE OPLIMAIE ..vvvvviiiiiiiiiiiiiiieiiietieei et rrr s aer e s aarerararasrasssassransrnnsannes
11.3. Equation de récurrence sur les valeurs 0ptimalesccveeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens
[1.4. Détection d’un cycle NEGAtif.......ccvuiiiiiiiei e

111) SOUS-PROBLEMES ET COMPLEXITEccceeurerurerreerresessessssesssesssssssessssessssessssessssssseneens
[11.1. Définition des SOUS-ProbIEMESuuiuiiiiiiiiiiiiiiiiiiiriieeiierirre e rarrrerrrarrrrrrarera——r——————————.
I11.2. Exemple d’application des équations de récurrence — graphe sans cycle négatif
I1l.3. Exemple d’application des équations de récurrence — graphe avec cycle négatif 10
I11.4. Remarque sur la détection d’un cycle négatif..........ccccooeeiiiiiiiiie e, 12

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUEccccovviiimnnmnnnniiiiicisninnneneeeens 13
IV.1. AlZOrIthME tOP-UOWN c..eeeviiiiiiiiiiiiiiiiiteeeeeeeeeereeerererreerreesreerressaeesrssrrrsrssararsrrrrssessrssrraees 13
IV.2. Complexité de I'algorithme top-dOWN........cooviiiiiiiiee e 14
IV.3. Algorithme DOttOM-UP ..euviiiiieii e e 14
IV.4. Complexité de I'algorithme bottomM-UPceiviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 15

V) ALGORITHME DE RECONSTRUCTION.......cuueiiiiiiiiiiinnnnneeiisissssssnsssessssssssssssssssssssssssssnns 16
V.1. Principe et algorithme de reconstruction..........ccccccciiii 16

V.2, COMPIEXILE fINAIE.......eeiiieeeie e e e e e e e e e e e e e e e eeas 16

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

I) PLUS COURTS CHEMINS ENTRE TOUTES LES PAIRES DE SOMMETS

I.1. Définition du probleme

Pourquoi se contenter de calculer les distances de plus court chemin a partir d’un seul
sommet source ? Par exemple, un algorithme de calcul d’itinéraires routiers doit pouvoir
prendre en charge n‘importe quel point de départ ; cela correspond au probléme des plus
courts chemins entre toutes les paires de sommets. Nous continuons d’autoriser, dans le
graphe d’entrée, des arétes de longueur négative ainsi que des cycles négatifs.

Probléme des plus courts chemins entre toutes les paires de sommets

Entrée : Un graphe orienté G = (V, E) avec n sommets et m arétes, et une longueur
réelle €. pour chaque aréte e € E.
Sortie : I'un des résultats suivants :

- la distance de plus court chemin dist(v, w) pour chaque paire ordonnée de
sommetsv,w €V ; ou
- une déclaration indiquant que G contient un cycle négatif.

Il n’y a pas de sommet source dans le probléme des plus courts chemins toutes paires. Dans
le cas n°1, I'algorithme doit produire n> nombres.

Sachant que la complexité d’une approche exhaustive est de O(n-n!) dans le cas d’'une
source unique (voir le cours sur Bellman-Ford), elle passe ici en O(n?n!), ce qui est prohibitif.
On va donc chercher une approche qui exploite une sous-structure optimale et des sous-
probléemes recouvrants, comme dans I'étude de Bellman-Ford.

I.2. Réduction aux plus courts chemins a source unique

Une approche naturelle consiste a répéter une sous-routine qui résout le probleme du plus
court chemin depuis une source unique (comme l’algorithme de Bellman-Ford).

Un seul appel a la sous-routine de I'algorithme de Bellman-Ford calcule les distances de plus
court chemin depuis un sommet s vers tous les sommets du graphe (soit n nombres au total,
sur les n? requis). En appelant la sous-routine une fois pour chacun des n choix possibles de
s, on obtient les distances de plus court chemin pour toutes les origines et toutes les
destinations possibles. La complexité temporelle est alors de O(n%:m).

La borne de temps d’exécution O(n?-m) est particulierement problématique dans les graphes
denses. Par exemple, si m = O(n?), le temps d’exécution devient quartique en n, ce qui est
encore trop élevé.

Il) UALGORITHME DE FLOYD-WARSHALL
Il.1. Sous-problémes

Trouver le bon découpage en sous-problémes pour une solution par programmation
dynamique a un probléme sur les graphes peut étre délicat. L'idée ingénieuse qui sous-tend
les sous-problémes de I'algorithme de Bellman-Ford pour le probleme du plus court chemin
a source unique consiste a toujours travailler avec le graphe d’entrée original et a imposer
une contrainte artificielle sur le nombre d’arétes autorisées dans la solution d’un sous-

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

probléme. Ce « budget » d’arétes sert alors de mesure de la taille du sous-probléme, et un
préfixe d’une solution optimale d’un sous-probléme peut étre interprété comme une
solution a un sous-probleme plus petit (avec la méme origine mais une destination
différente).

L'idée maitresse de I'algorithme de Floyd—Warshall est d’aller encore plus loin en
restreignant artificiellement l'identité des sommets autorisés a apparaitre dans une solution.

Pour définir les sous-problémes, considérons un graphe d’entrée G = (V, E) et attribuons
arbitrairement a ses sommets les noms 1, 2, ..., n (ou n=|V]). Les sous-problémes sont alors
indexés par des préfixes {1, 2, ..., k} de I'ensemble des sommets (k servant a la fois de
mesure de la taille du sous-probléme) ainsi que par une origine v et une destination w.

Sous-problémes de I'algorithme de Floyd-Warshall
Calculer Lxy,w, la longueur minimale d’un chemin dans le graphe d’entrée G qui :

- commence en vV et se termineen w ;

- n’utilise comme sommets internes que des sommets appartenant a {1, 2, ..., k};

- et (hypothese) ne contient pas de cycle négatif (on retourne « Cycle négatif
détecté » sinon)

(Si aucun chemin de ce type n’existe, on définit Ly w = +0)

(Pour chaque k€{0, 1, 2, .., n}etv,wEV)

llya(n+1):n-n=0(n3) sous-problémes. Le lot des plus grands sous-problémes (avec k = n)
correspond au probléme initial. Pour une origine v et une destination w fixées, I'ensemble
des chemins autorisés s’élargit lorsque k augmente, et par conséquent Lxvw ne peut que
décroitre quand k croit.

Considérons par exemple le graphe de la figure 1 avec pour I'origine 1 et la destination 5 et
les sous-problémes correspondant aux valeurs successives de la longueur du préfixe k :

Figure 1 : Exemple de graphe

- Quandkvaut 0, 1 ou 2, il n’existe aucun chemin de 1 a 5 tel que tout sommet interne
appartienne au préfixe {1, 2, ..., k}, et la solution du sous-probleme est +oo.

- Quand k=3, lechemin1— 2 — 3 — 5 devient 'unique chemin admissible ; sa
longueur est 2 + (-4) + 5 = 3. Le chemin en deux sauts est disqualifié parce qu’il inclut
le sommet 4 comme sommet interne. Le chemin en trois sauts est admissible méme si
le sommet 5 n"appartient pas au préfixe {1, 2, 3} car en tant que destination, ce
sommet bénéficie d’'une exemption et n’est pas considéré comme sommet interne.

- Quand k = 4 (ou davantage), la solution du sous-probléme est la longueur du véritable
plus court chemin 1 — 4 — 5, qui vaut -20.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Nous verrons que l'intérét de définir les sous-problémes de cette maniére est qu’il n’existe
que deux candidats possibles pour une solution optimale d’un sous-probléme, selon qu’elle
utilise ou non le dernier sommet autorisé k (a I'inverse, dans I’algorithme de Bellman-Ford,
le nombre de solutions candidates pour un sous-probléme dépend du degré entrant du
sommet de destination). Cela conduit a un algorithme de programmation dynamique qui
n’effectue que O(1) travail par sous-probléme et qui est donc plus rapide que n exécutions
de I'algorithme de Bellman-Ford (avec un temps d’exécution O(n3) plutét que O(n?-m)).

I1.2. Sous-structure optimale

Considérons un graphe d’entrée G = (V, E) dont les sommets sont étiquetés de 1 a n, et
fixons un sous-probleme, défini par un sommet d’origine v, un sommet de destination w et
une longueur de préfixe k € {1, 2, ..., n}.

Supposons que P soit un chemin de v a w sans cycle, dont tous les sommets internes
appartiennent a {1, 2, ..., k}, et qu’il s’agisse en outre d’un plus court chemin parmi ceux-ci. A
quoi doit-il ressembler ? Le dernier sommet autorisé k apparait soit comme sommet interne
de P, soit il n’y apparait pas.

Cas n°1: Le sommet k n’est pas un sommet interne a P.
Dans ce cas, le chemin P peut immédiatement étre interprété comme une solution au sous-

probléeme plus petit avec une longueur de préfixe k - 1, toujours avec |'origine v et |a
destination w.

Exemple : Prenons le graphe orienté a 4 sommets V ={1, 2, 3, 4} ci-dessous, la source 1 et la
destination 4 :

Considérons la solution optimale avec k = 4, c’est-a-dire dont tous les sommets internes
appartiennent a {1, 2, 3, 4}. Cette solution est le chemin P = (1 — 2 — 4) qui ne contient que
le sommet interne {2}.

Puisque le sommet k = 4 n’est pas un sommet interne de P, on peut interpréter P comme
une solution au sous-probléme plus petit avec k = 3. La solution de ce sous-probléme reste la
méme : P = (1 > 2 — 4), dont les sommets internes sont dans {1, 2, 3}.

De nouveau, puisque le sommet k = 3 n’est pas un sommet interne de P, on peut interpréter
P comme une solution au sous-probléme plus petit avec k = 2. La solution de ce sous-
probléme reste la méme : P = (1 — 2 — 4), dont les sommets internes sont dans {1, 2}

A ce stade, puisque le sommet k = 2 appartient a P, on ne peut plus continuer avec le cas
n°1l. Analysons donc maintenant le cas n°2.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Cas n°2 : Le sommet k est un sommet interne a P.

Dans ce cas, le chemin P peut étre interprété comme la concaténation de deux solutions a
des sous-problémes plus petits : le préfixe P1 de P, qui va de v a k, et le suffixe P, de P, qui va
dekaw:

P, = (v —k) de longueur L, P, =(k —w) de longueur L,
(sommets internes € {1, 2, ..., k-1}) (sommets internes € {1, 2, ..., k-1})

|
P =(v—w) de longueur L (sommets internes € {1, 2, ..., k-1})

Figure 2 : lllustration du cas n°2

Le sommet k n’apparait qu’une seule fois dans P (puisque P ne contient pas de cycle) et, par
conséquent, il n’est pas un sommet interne de P1 ni de P,. On peut donc considérer P; et P
comme des solutions a des sous-problemes plus petits, d’origines v et k et de destinations k
et w respectivement, et dont tous les sommets internes appartiennent a {1, 2, ..., k-1}.

Ce dernier argument explique pourquoi les sous-probléemes de Floyd—Warshall,
contrairement a ceux de Bellman-Ford, imposent la condition d’absence de cycle. Notons
que cette approche ne fonctionnerait pas bien pour le probléme du plus court chemin a
source unique, car le chemin suffixe P, aurait un sommet d’origine incorrect.

Exemple : Reprenons le graphe orienté a 4 sommets précédent, la source étant le sommet 1
et la destination 4 :

Puisque les sommets 4 et 3 ne sont pas des sommets internes a la solution optimale P = (1
— 2 — 4), ce probleme revient a chercher la solution au sous-probléme P = (1 — 2 — 4)
lorsque k = 2.

Lorsque k = 2, nous sommes dans le cas n°2 puisque le sommet k = 2 est utilisé comme
sommet intermédiaire. Le chemin P peut donc se décomposer en deux sous-chemins :
- P1={1..k}={1—>2}
- P2={k..4}={2 > 4}

Ces deux sous-chemins doivent avoir leurs sommets internes dans {1, 2, ..., k-1} = {1}.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

I1.3. Equation de récurrence sur les valeurs optimales

On note Lky,w la longueur minimale d'un chemin sans cycle de v a w avec tous les sommets
intermédiaires dans {1, 2, ..., k} (s'il n'existe pas de tels chemins, alors Lgy,w = +).

Récurrence sur la valeur de la solution optimale

Les cas de base sont pour k=0

- Loyyv =0 pourtoutv €V (chemin vide de longueur 0) ;
- Lovw = €yw (aréte directe) si (v, w) EE

- Loyw=+osivzwet(v,w) gE

Pourtoutk €{1, 2, .., njetvw€EV:
Li_1pw (cas n°1)

Liy,w =min
L + L (casn°2)
k-1v,k k-1,k,w

Le premier terme dans le « min » correspond au cas 1 (le sommet k n'est pas utilisé comme
intermédiaire). Le second terme correspond au cas 2 (le sommet k est utilisé comme
intermédiaire, et le chemin se décompose en un chemin v — k et un chemin k — w).

11.4. Détection d’un cycle négatif

Les entrées « diagonales » du tableau des sous-problémes sont révélatrices de la présence
d’un cycle négatif :

Détection d’un cycle négatif

Le graphe d’entrée G = (V, E) contient un cycle négatif si et seulement si, a la fin de
I"algorithme de Floyd—Warshall, on a Ly, < O pour un certain sommetv € V.

La suite de cette partie est consacrée a la démonstration de ce résultat.

Si le graphe d’entrée ne contient pas de cycle négatif, alors I'algorithme Floyd—Warshall
calcule correctement toutes les distances de plus court chemin et il n’existe aucun chemin
d’un sommet v vers lui-méme qui soit plus court que le chemin vide (de longueur 0). Ainsi, a
la fin de I'algorithme, on a Lny,y = 0 pour toutv € V.

Si un cycle négatif est présent, les « distances » au sens « min » sur tous les chemins (avec
cycles autorisés) peuvent tendre vers -0, donc I'algorithme n’est pas tenu de renvoyer des
valeurs « correctes » en tant que distances. Cependant, on va montrer que méme si un cycle
négatif existe, les quantités L ,w calculées par I'algorithme pour les chemins sans cycle
restent toujours inférieures ou égales a la meilleure longueur d’un chemin v — w sans cycle,
dont les sommets internes sont restreints a {1, 2, ..., k}. Les quantités calculées par Floyd—
Warshall gardent donc malgré tout une propriété de majoration « par le bas » vis-a-vis des
chemins sans cycle.

Ce résultat peut se prouver par récurrence et est important pour montrer ensuite la
propriété « Lny,y < 0 pour un certain sommet v € V si G contient un cycle négatif ».

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Initialisation : si k = 0, aucun sommet interne n’est autorisé. Les seuls chemins sans cycle
possibles sont :

- le chemin vide (si v =w) de longueur 0 ;

- oul'aréte directe v— w si elle existe (de longueur 8w)

- ourien (donc +0)

Donc Loy w est exactement la longueur minimale d’un chemin sans cycle avec sommets
internes dans &.

Hérédité : supposons que cela soit vrai pour (k - 1) et montrons que cela est vrai également
pour k. Prenons un chemin P quelconque v — w, sans cycle, dont les sommets internes sont
dans{1,..., k}.

Dans le cas ou k n’est pas un sommet interne de P (cas n°1 de la sous-structure optimale),
alors tous les sommets internes de P sont dans {1, ..., k-1}. Donc P est admissible au niveau
(k-1) etdoncona Ly, < longueur (P)

Dans le cas ou k est un sommet interne de P (cas n°2), comme P est sans cycle, le sommet k
apparait une seule fois sur P. On peut donc écrire P =P1 + P ol P1 = (v > k) et P2 = (k > w),
tous les deux sans cycle, et dont les sommets sont dans {1, ..., k-1}. Par hypothése de
récurrenceona:

Ly_1px < longueur (Py) et Ly_q .y < longueur (P,)
En sommant :

Ly_ypi + L1 xw < longueur (P)

Or, d’apres I'’équation de récurrence de Floyd-Warshall, on a:

Lk—l,v,w
Ly yw = min
Li—1pk + Li—1kw

Donc puisque Ly 1,y < Lg_1px + Lyg—1xw, On oObtient Ly ,,,, < longueur (P).

En conclusion, dans tous lescasona: Ly, ,, < longueur (P).

L'inégalité ci-dessus montre que les valeurs renvoyées par I'algorithme de Floyd—Warshall ne
sont jamais « trop grandes » par rapport aux meilleurs chemins simples autorisés, méme si

un cycle négatif est présent.

Nous allons maintenant montrer la propriété « Lnyy < 0 pour un certain sommetv € Vsi G
contient un cycle négatif ».

Supposons que G contienne un cycle négatif. Ce cycle peut étre un cycle « complexe » ou
I’on autorise des répétitions de sommets. Mais si ce cycle fait une boucle et qu’il repasse par
un méme sommet, on a en réalité fait « deux boucles » imbriquées et si la somme des deux

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

est négative, au moins une des deux boucles est déja négative. On peut donc extraire d’un
cycle négatif « complexe » un cycle négatif plus « simple » (qui utilise strictement moins de
répétitions, ou au moins moins de sommets/arétes). En répétant cette idée tant qu’il reste
une répétition interne, on finit (car on retire des portions et la longueur décroit) par obtenir
un cycle négatif « simple » qui ne répéete aucun sommet, sauf le premier/dernier. Cela
implique que G possede forcément un cycle négatif ne comportant aucun sommet répété, a
I’exception de son sommet de départ et de son sommet d’arrivée.

Notons C le cycle « simple », choisi arbitrairement. Supposons que le sommet k du cycle
simple C ait I'étiquette la plus grande. Soit v # k un autre sommet de C:
P‘i

P,

Les deux « cotés » P; et P2 du cycle sont des chemins sans cycle devak et de ka v, dont les
sommets internes sont restreints a {1, 2, ..., k-1}. D’apres ce que nous avons vu
précédemment, ona:

Ly_1vx < longueur (P;) et Ly_1x,, < longueur (P,)
Puisque :
Liyy < Lk—1vi + Lg—1xp < longueur (C) <0

D’apres la récurrence de Floyd-Warshall, on a finalement la valeur finale : L, ,,,, < 0.

Remarque : la « diagonale négative » Lnyy < 0 est I'expression du fait qu’un cheminv —» v
plus court que le chemin vide (longueur 0) ne peut exister que s’il contient un cycle de
longueur négative.

I11) SOUS-PROBLEMES ET COMPLEXITE
lll.1. Définition des sous-problemes

Rappelons ici les sous-problémes :

Sous-problémes de I'algorithme de Floyd-Warshall

Calculer Lgy,w, la longueur minimale d'un chemin sans cycle de v a w dans G avec tous
les sommets intermédiaires dans {1, 2, ..., k}. Si un tel chemin n'existe pas, Lxyw = +0.

(Pour chaque k=0, 1, 2, ..., net chaque v, w € V)

Le nombre total de sous-problémes est (n + 1)-n-n = O(n3).

l1l.2. Exemple d’application des équations de récurrence — graphe sans cycle négatif

Prenons I'exemple du graphe en figure 3 et étudions le cas particulier ou la source est le
sommet s et la destination le sommet t. Les sommets sont étiquetés de la maniére suivante :
s=1,v=2,u=3,w=4ett=5.

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Avec une vision de type bottom-up, au début de I'algorithme k = 0 (aucun sommet interne
n’est autorisé) et les valeurs des cas de base sont les suivantes :
L[0][v][t]=4

L[O][u][t]=+=
Figure 3: Valeurs des sous-problémes pour k = 0

Pour k = 1, on autorise le sommet interne s et la récurrence donne :

- L[1][s][t] = min {L[O][s][t], L[O][s][s] + L[O][s][t]} = +o0 (on ne peut pas aller de s —> t en
prenant le sommet interne s ;

- L[1][v][t] reste a 4 (le chemin v — t est direct)

- L[2][u][t] = min {L[O][u][t], L[O][u][s] + L[O][s][t]} = +o0 (on ne peut pas allerde u — t en
prenant le sommet internes;

- L[1][w][t] reste a 2 (le chemin w — t est direct)

- L[1][t][t] reste a O (chemin vide de longueur 0)

L[1][s][t)=+o L[1][t][t]=0

HoHH=0

L[L][u][t]=+> L[2][w][t]=2
Lol =ee LoHpwiit=2
Figure 4: Valeurs des sous-problémes pour k = 1

Pour k = 2, on autorise les sommets internes {s, v}. Les valeurs qui évoluent sont :
- L[2][s][t] = min {L[2][s][t], L[1][s][v] + L[1][V][t]} = min {+o0, 4+4} =8 ;
- L[2][u]lt] = min {L[1][u][t], L[2][u]lv] + L[2][V][t]} = min {+o0, -1+4} = 3
L[2][v][t]=4

Figure 5 : Valeurs des sous-problémes pour k = 2

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Pour k = 3, on autorise les sommets internes {s, v, u}. La valeur qui évolue est L[3][s][t] :
- LB][s][t] = min {L[2][s][t], L[2][s][u] + L[2][u][t]} = min {8, 2+3}=5;

L3][v][t]=4

L[3][s][t]=5 (5) L[3][t][t]=0
[2Hs}=8 E[-H-H—H-t-}jg
o LoD
HOHsHt}=+ee

L[3][w][t]=2

L[3][u][t]=3 2 bwif=2

H2Heid=3 Labwiig=2

Hifoit=+e Hotwit=2

Figure 6 : Valeurs des sous-problémes pour k = 3

Pour k = 4, on autorise les sommets internes {s, v, u, w}. Cela n’améliore rien depuis le
sommet u car le chemin {u — v — t} est plus court que le nouveau chemin autorisé {u > w
— t} et on garde les mémes valeurs.

Pour k =5, on autorise 'ensemble des sommets internes {s, v, u, w, t} mais passer par le
sommet t n"apporte aucun bénéfice et donc les valeurs restent identiques.

Le résultat final est donc obtenu a k = 3, autorisant les sommets internes {s, v, u}. La distance
minimale pour aller de s — t est donc de 5, en suivant le chemin optimal {s > u —> v —> t}.

l11.3. Exemple d’application des équations de récurrence — graphe avec cycle négatif

Considérons maintenant le graphe ci-dessous avec un cycle négatif (u - v — w — u) qui est
atteignable depuis la source, et étudions le cas particulier ol la source est le sommet s et la
destination le sommet v. Les sommets sont étiquetés de la maniéere suivante :s=1,u=2,x=
3,w=4etv="5.A/litération k == 0, on a les valeurs suivantes :

L[O][w][v]=+ec

(1)

L[O][s][v]=+e0 @ 1

L[O][v][v]=0

4 L[O][u][v]=-2

(3)

L[O][x][v]=+o0
Figure 7: Valeurs des sous-problémes pour k = 0

10

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Pour k = 1, on autorise le sommet interne s et les valeurs resteront les mémes car autoriser
le sommet s ne permet pas d’améliorer les valeurs.

Pour k = 2, on autorise les sommets internes {s, u}, ce qui va permettre d’améliorer la
distance des cheminss >vetw > v:

- L[2][s][v] = min {L[1][s][v], L[1][s][u] + L[2][u][v]} = min {+o0, 1 -2} =-1

- LI2Jw]{v] = min {L[1][w][v], L[2][w][u] + L[1][u][v]} = min {+o0, -1 - 2} = -3

L[2][w][v]=-3

(1)

L[2][s][v]=-1 1 L[2][v][v]=0
Lsth=rs (S LaHviiv=0
HOHsHvi=4ee LR2][u]iv]=-2 HeHvig=0

HiHolv=2

HoHev=2

L[2][x][v]=+
D=+
Hotbd =+

Figure 8 : Valeurs des sous-problémes pour k = 2

Pour k = 3, on autorise en plus le sommet interne x et rien ne changera pour les valeurs.

Pour k = 4, on autorise maintenant les sommets internes {s, u, x, w}. On commence a faire
apparaitre la diagonale négative L[4][V][V] :
- L[4][v][v] = min {L[3][v][v], L[3][v][w] + L[3][w][v]} = min {0, -3 - 3} = -6

L[4][w][v]=-3

Lals]vi=1 (1) L[4][v][v]=-6
LE2Hslvi=—1 @ 1 21vHvi=0
Hifsiv=tes Hiwivi=0
HoHsHv=+s Hojbwivi=0

L[4][x][v]=+oo
TSN I
L
Hotbdw=+e

Figure 9 : Valeurs des sous-problémes pour k = 4

11

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

Pour k = 5, on ajoute le sommet v aux sommets autorisés :

L[S][s][v] = min {L[4][s][v], L[4][s][v] + L[4][V][V]} = min{-1,-1-6}=-7
L[5][u][v] = min {L[4][u][v], L[4][u][V] + L[4][V][V]} = min {-2,-2 -6} =-8
L[S][w][v] = min {L[4][w][V], L[4][w][v] + L[4][V][v]} = min{-3,-3 - 6} =-9
L[5][v][v] = min {L[4][v][v], L[4][V][Vv] + L[4][v][v]} = min {-6, -6 - 6} = -12

L[5)[w][v]=-9

L[5][s][v]=-7 @ L[5][v][v]=-12
HatsHv=2 Hptv=6
H2HsHw=2 (S H2Piv=0
Fitsttvi= L[5][u][v]=-8 rHtvitas
H2fuHv=2
(3)®H-1-]-EH+M=-%
HotuHvl=2
L[5][X][v]=+e0
Hathdpe=+ee
L2 p=+ee
L hdp=tee
Hothdp=+ee

Figure 10: Valeurs des sous-problémes pour k =5

Le fait que L[5][v][v] soit négatif signifie qu’on a détecté un cycle négatif.

l1l.4. Remarque sur la détection d’un cycle négatif

Dans I'exemple précédent, on a vu que le cycle négatif a été détecté des l'itération k =4
(L[4][v][v] < 0). La preuve que nous avons faite en page 7-8 n’oblige pas a aller jusqu’a k=n

si un cycle négatif est détecté a k.

L’algorithme standard de type « bottom-up » vise a calculer toutes les distances (quand il n’y

a pas de cycle négatif), et a fournir un test uniforme. On exécute donc systématiquement
toutes les itérations k = 1, ..., n, puis on teste la diagonale a la fin. Mais pour la détection

seule, on peut arréter dés qu’une diagonale devient négative.

On peut donc inclure une détection de cycle négatif au fur et a mesure que I'algorithme de

type « top-down » calcule les diagonales et en détecte une strictement négative. Mais on ne

peut pas conclure « pas de cycle négatif » tant qu’on n’a pas forcé le calcul de toutes les

diagonales pertinentes (typiquement L[n][v][v] pour tout v).

12

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE
IV.1. Algorithme top-down

Algorithme top-down pour le calcul des valeurs optimales

Entrée : G =(V, E), avecV ={1, 2, ..., n}, longueurs €. pour chaque aréte e € E.
Sortie : dictionnaire des distances dist{} ou « Cycle négatif »

L:={} # Dictionnaire de mémoisation
dist :={} # Dictionnaire des distances
n:=|V|

rec_opt_val_FloydWarshall(k, v, w) :
Utilise la mémoisation

Si(k, v, w) estdansL:

| Retourner L[(k, v, w)]

Cas de base (k==0)

Sik==0:

Siv==w:
| Lk v, w):=0

Sinon si (v, w) est une aréte de G :
| Lk v, w)] = 8w

Sinon :
| L[(k, v, w)] := 400

Retourner L[(k, v, w)]

Cas récursif

casl :=rec_opt_val_FloydWarshall(k-1,v,w)

cas2 :=rec_opt_val_FloydWarshall(k-1,v,k) + rec_opt_val_FloydWarshall(k-1,k,w)
L[(k, v, w)] := min(cas1, cas2)

Détection précoce d’un cycle négatif si c'est un sous-probléeme diagonal
Siv=wetL[(k v,w)]<0:

| Lever une exception « Cycle négatif détecté »

Retourner L[(k, v, w)]

Calcul des distances optimales

Pour chaque vdans V:

Pour chaque w dans V :

| dist[(v,w)] := rec_opt_val_FloydWarshall(n, v, w)

Retourner dist

13

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

IV.2. Complexité de I'algorithme top-down

Le nombre de sous-problémes distincts est de (n + 1)-n? = O(n3) et le travail par sous-
probléme est en O(1). Dong, si I’'on calcule toutes les paires (v, w), le temps est O(n3).
’espace de mémoisation est O(n3) si 'on mémorise tous les états calculés.

Remargue : si on ne demande qu’une seule paire (v, w), le top-down peut éviter de calculer
certains états inutiles. Toutefois, dans le pire cas, 'ensemble des dépendances peut encore
forcer le calcul d’une fraction importante des O(n3) états. Le bottom-up, lui, calcule
systématiquement tous les états.

IV.3. Algorithme bottom-up

L'algorithme bottom-up remplit progressivement les valeurs Ly v,w par préfixes croissants k,
en partant des cas de base.

Algorithme bottom-up pour le calcul des valeurs optimales

Entrée : G=(V, E), avecV ={1, 2, ..., n}, longueurs £. pour chaque aréte e € E.
Sortie : dictionnaire des distances dist{} ou « Cycle négatif »

L:={} # Dictionnaire de mémoisation
dist :={} # Dictionnaire des distances
n:=|V]|

opt_val_FloydWarshall() :

Cas de base (k =0)

Pourvallantdelan:

Pourw allantdelan:

Siv==w:
I L[(0, v, w)] :=0

Sinon si (v, w) est une aréte de G :
| L[(0, v, W)] := 8uw

Sinon :
| LI, v, w)] := +0

Résoudre systématiquement tous les sous-problemes
Pourkallantde 1an: # préfixe des sommets autorisés
Pourvallantdelan: #origine
Pour wallantde 1an: # destination
Utiliser la récurrence
L[(k, v, w)] :==min (L[(k- 1, v, w)], L[(k- 1, v, k)] + L[(k - 1, k, w)])

Vérifier la présence d'un cycle négatif
Pourvallantdelan:

SiL[(n,v,Vv)]<0:

I Retourner « Cycle négatif détecté »

dist := L[(n, v, w)] pour toutv, w € G
Retourner dist

14

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

IV.4. Complexité de I'algorithme bottom-up

L'algorithme bottom-up calcule systématiquement tous les sous-problémes (k, v, w) pour

tous les k, v et w. Il y a O(n®) sous-problémes a calculer, et chaque sous-probleéme s'exécute

en O(1) (une comparaison et deux additions).

La complexité temporelle est donc O(n?) et la complexité spatiale O(n3).

On peut réduire I'espace a O(n?) en ne gardant que deux « tranches » du tableau (tranche k-

1 et tranche k) car ce sont uniqguement ces tranches qui sont nécessaires pour calculer les
éqguations de récurrence.

Au lieu de calculer tous les Lgy,w pour k={0, 1, .., n} et pour chaque v, w € V, a chaque
itération de k on calcule pour chaque sommetvetw :
Lyw (cas n°1)
Ly, = min
Lyy + Ly (casn®°?2)

Le premier terme correspond au cas n°1 (on garde la valeur précédente), le second au cas
n°2 (on améliore via le sommet k comme nouvel intermédiaire).

Algorithme bottom-up optimisé en mémoire

Entrée : G =(V, E), avecV ={1, 2, ..., n}, longueurs £. pour chaque aréte e € E.
Sortie : dictionnaire des distances dist{} ou « Cycle négatif »

dist := {} # Dictionnaire des distances
n:=|V|

opt_val_FloydWarshall() :
Initialisation (k = 0)
Pourvallantdelan:
Pourw allantdelan:
Siv==w:
| dist[(v,w)]:=0
Sinon si (v, w) EE :
| dist[(v, w)] := 8w
Sinon :
| dist[(v, w)] := +0
Itérations principales
Pourkallantdelan:

Pourvallantdelan:

Pourw allantdelan:
| dist[(v, w)] := min(dist[(v, w)], dist[(v, k)] + dist[(k, w)])

Détection de cycle négatif
Pourvallantdelan:

Sidist[(v,v)] <0:

I Retourner « Cycle négatif détecté »

Retourner dist

15

COURS : PROGRAMMATION DYNAMIQUE — ALGORITHME DE FLOYD-WARSHALL

V) ALGORITHME DE RECONSTRUCTION
V.1. Principe et algorithme de reconstruction

L'objectif est de reconstruire un plus court chemin depuis un sommet v vers un sommet w, a
partir des informations calculées par la programmation dynamique.

On part de (k, v, w) = (n, v, w) et on remonte :
- SiL[Kk][v][w] == L[k-1][v][w], alors le sommet k n'est pas utilisé comme intermédiaire :
onpasseak-1;
- Sinon, L[k][v][w] == L[k-1][v][Kk] + L[k-1][k][w], et le sommet k est sur le chemin
optimal. On reconstruit récursivement le chemin v — k puis le chemin k — w.
- Ons'arréte quand k = 0 (chemin direct ou pas de chemin).

Algorithme de reconstruction

Entrée : Dictionnaire L = {...}, origine v et destination w.
Sortie : Liste d’arétes (ou sommets) du chemin optimum v — w.

Reconstruction_FloydWarshall(L, v, w) :
Cas trivial : origine == destination
Siv==w:

I Retourner [v]

Cas ou il n’y a pas de chemin
SiL[(n, v, w)] == 400 :
| Lever une exception « Pas de chemin »

Fonction récursive
rec_FloydWarshall(k, v, w) :
Cas trivial si k == 0 : aréte directe
Sik==0:

| Retourner [v, w]

Cas n°1 : k n’est pas un sommet intermédiaire
Si L[(k, v, w)]==L[(k-1,v,w)]:

I Retourner rec_FloydWarshall(k-1, v, w)
Casn°2
cheminl :=rec_FloydWarshall(k-1, v, k)
chemin2 :=rec_FloydWarshall(k-1, k, w)

Concaténer en évitant de dupliquer k
Retourner cheminl + chemin2[1:]

n:=|V|
Retourner rec_FloydWarshall(n, v, w)

V.2. Complexité finale

Pendant la reconstruction, on descend de k =n a k =0, et a chague niveau on ajoute un
sommet intermédiaire. La complexité de reconstruction d'un chemin est donc O(n) dans le
pire cas, et la reconstruction de I'ensemble des chemins est de O(n3) car il y a n? chemins de
longueur O(n). Dans tous les cas, la complexité totale finale est en O(n3).

16

